Letters 673

Eur J Cancer, Vol. 27, No. 5, p. 673, 1991. Printed in Great Britain 0277-5379/91 \$3.00 + 0.00 Pergamon Press plc

H-ras Transfection in Mink Lung Epithelial Cells May Induce "Atypical" Multidrug Resistance

Gordon C. Wishart, Jane A. Plumb, Demetrios A. Spandidos and David J. Kerr

It is now well recognised that a correlation exists between oncogene expression and prognosis in certain tumour types, e.g. erb-B2 and breast cancer [1]. Since oncogene transfection of immortalised cells can result in relative resistance to a range of antineoplastic drugs [2] this association could be explained by the development of cellular drug resistance in the transfected cells. In a previous study we examined patterns of drug cross resistance in mink lung epithelial cells transfected with c-myc, H-ras proto-oncogene and activated H-ras in an attempt to predict the potential underlying mechanisms of resistance. Cytotoxic drug sensitivity was measured in the transfected lines using a tetrazolium based microtation assay [3]. In this study the mink lung line transfected with activated H-ras developed a clinically relevant two-fold resistance to doxorubicin and vincristine but not etoposide (Table 1). This particular pattern of resistance is consistent with that found in multidrug resistant (MDR) cell lines suggesting that the H-ras transfected cells may be expressing the mdr-1 gene and its protein product Pglycoprotein (P-gp). We have therefore examined P-glycoprotein expression in the parent line and the three transfected lines by immunohistochemistry using a monoclonal antibody to P-gp, C219 [4].

The cell lines were obtained from the parent cell line Mv1Lu by insertion of mutated (T24) and non-mutated H-ras1 and human c-myc genes in high expression vectors by a modification of the calcium phosphate precipitation technique [5]. These cell lines, named MLMC (myc), H06N1 (normal H-ras) and H06T1 (mutated H-ras), were expanded from a single clone and their mink origin confirmed by chromosomal analysis.

The immunohistochemical technique is described more fully elsewhere [6]. In brief, acetone-fixed cytospin preparations of all cell lines were incubated with the primary antibody C219 which was applied at a final concentration of 10 µg/ml. The secondary antibody was a rabbit anti-mouse immunoglobulin conjugated to alkaline phosphatase and used at a working concentration of 1:20 for 45 minutes. The colour reaction was

Correspondence to G.C. Wishart.

Table 1. Cytotoxic response of parent and transfected cell lines following 24 h exposure to a range of antineoplastic drugs

Cell line	$ID_{so}\left(\mu mol/l\right)$			
	Cisplatin	Doxorubicin	Vincristine	Etoposide
Mv1Lu	0.41 (0.05)	2.7 (0.3)	2.4 (0.3)	1.73 (0.05)
MLMC	0.46 (0.04)	3.4 (0.3)	3.7 (0.9)	0.81 (0.05)
HO6N1	0.34 (0.03)	2.6 (0.5)	4.9 (0.6)	0.31 (0.02)
HO6T1	0.50 (0.04)	4.4 (0.3)	4.9 (0.2)	0.56 (0.02)

Mean (S.E.).

ID₅₀ is the drug concentration which kills 50% of cells.

developed using a substrate solution based on fast red producing a red reaction in positive cells. As a positive control we used the small cell carcinoma of lung line H69/LX10, shown previously to have high expression of P-gp [7] and in negative controls the primary antibody was substituted by an irrelevant antibody (Clonab LN-C).

Our results show no evidence of P-gp expression in the activated H-ras transfected line or the two other derived lines in the presence of appropriate positive and negative controls. A number of cell lines which exhibit the MDR phenotype in the absence of P-gp expression have now been isolated [8] and the H-ras line may well fit in to this category.

In conclusion, we have isolated a H-ras transfected mink lung line which has a drug cross resistance pattern consistent with the MDR phenotype but which does not express P-gp. This pattern, often called "atypical" MDR, suggests that alternative biochemical pathways to P-gp must exist and these atypical MDR cell lines may prove useful in identifying them.

- 1. Borresen AL, Ottestad L, Gaustad A, et al. Amplification and protein over expression of the neu/HER-2/c-erbB2 protooncogene in human breast carcinomas: relationship to loss of gene sequences on chromosome 17, family history and prognosis. Br J Cancer 1990, 62, 585-590.
- Sklar MD. Increased resistance to cis-diamminedichloroplatinum (II) in NIH 3T3 cells transformed by ras oncogenes. Cancer Res 1988, 48, 793-797.
- 3. Plumb JA, Milroy R, Kaye SB. Effects of the pH dependence of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide-formazan absorption on chemosensitivity determined by a novel tetrazolium-based assay. Cancer Res 1989, 49, 4435–4440.
- Kartner N, Evernden-Porelle D, Bradley G, Ling V. Detection of P-glycoprotein in multidrug resistant cell lines by monoclonal antibodies. *Nature* 1985, 316, 820–823.
- 5. Spandidos DA, Wilkie NM. Expression of exogenous DNA in mammalian cells. In: Hames BD, Higgins SJ, eds. In vitro Transcription and Translation, a Practical Approach. Oxford, IRL Press, 1.
- Wishart GC, Plumb JA, Going JJ, et al. P-glycoprotein expression in primary breast cancer detected by immunocytochemistry with two monoclonal antibodies. Br J Cancer 1990, 62, 758-761.
- Plumb JA, Milroy R, Kaye SB. The activity of verapamil as a resistance modifier in vitro in drug resistant human tumour cell lines is not stereospecific. Biochem Pharmacol 1990, 39, 787–792.
- 8. Beck WT, Cirtain MC, Danks MK, et al. Pharmacological, molecular and cytogenetic analysis of 'atypical' multidrug resistant human leukemia cells. Cancer Res 1987, 47, 5455-5460.

G. C. Wishart, J. A. Plumb and D. J. Kerr are at the CRC Dept of Medical Oncology, Alexander Stone Building, Garscube Estate, Switchback Road, Bearsden, Glasgow G611BD, U.K.; and D. A. Spandidos is at the Hellenic Institute Pasteur, Athens, Greece. Received 11 Feb. 1991; accepted 22 Feb. 1991.